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Abstract
Motivated by the results of recent photoemission and tunneling studies, we discuss potential
many-body sources of a finite gap in the Dirac fermion spectrum of graphene. Specifically, we
focus on the putative Peierls- and Cooper-like pairing instabilities, which can be driven by
sufficiently strong Coulomb and electron–phonon interactions, respectively. Our results
compare favorably with the available experimental and Monte Carlo data.

1. Introduction

The recent advent of graphene has brought about a plethora of
theoretical studies of the emergent behaviors and new phases
of electronic matter in degenerate semimetallic systems.

Amongst other spectacular experimental findings, recent
photoemission [1] and tunneling [2] data obtained, corre-
spondingly, in epitaxially grown and suspended graphene
demonstrated the presence of a sizable gap in the (otherwise
nearly linear) spectrum of the Dirac-like quasiparticles which
dominate the transport and optical properties of this novel
material. Moreover, comparable gaps were observed in bi- and
tri-layers.

Thus far, the proposed explanations of these findings
invoked the effect of a commensurate static corrugation
(surface reconstruction, ‘frozen phonon’) and/or breaking of
the symmetry between two sublattices (hereafter, A and B)
of the graphene sheet due to a nearby substrate, which
mechanisms can result in a hybridization of the electronic
states from the vicinity of the two Dirac points (hereafter, L
and R) [1–3].

Alternatively, the gap can also be generated by the
Coulomb or phonon-mediated interactions, thus resulting from
an incipient instability of the nodal fermion system itself.

In particular, the pertinent Coulomb-interaction-driven
Peierls-like instabilities can be divided onto two main groups.
The first one is represented by various graphene-specific
modifications of the standard scenario of excitonic insulating
behavior developing in fermion systems with a finite Fermi
surface [4].

Specifically, such proposals were discussed in the cases of
a parallel field [5, 6] and an electrically biased bi-layer [7],
under either of which conditions one has matching pairs of

electron and hole Dirac gases with finite (and equal—in the
case of undoped graphene) chemical potentials, as measured
from the Dirac point.

In these BCS-type scenarios, an opening of the excitonic
gap at arbitrarily weak couplings is facilitated by a finite
density of states (DOS) at the Fermi surface, the gap being
proportional to the effective Fermi energy of either of the
two mutually attracting components. In particular, the authors
of [5] found the excitonic gap to scale (almost) linearly with
the Zeeman splitting,� ∼ B .

In contrast to these scenarios, the possibility of excitonic
pairing between the Dirac fermions with a vanishing DOS was
first discussed in the context of multi-layered HOPG graphite,
and later graphene, for both the physical long-range Coulomb
interaction [8, 9] as well as its short-range surrogates [10]. By
and large, the justification for using the latter, thus far, has been
their computational convenience, as compared to the genuine
Coulomb case.

The early analysis carried out in [8, 9] predicts the
existence of a finite threshold for the strength of the Coulomb
coupling quantified in terms of the analogue of the ‘fine
structure constant’

g = e2

εv
≈ 2.16

ε
(1)

where ε is the dielectric constant of the surrounding medium
(in the case of a graphene monolayer sandwiched between
two different media it equals the average of the corresponding
dielectric constants).

Moreover, [8, 9] also discussed a concomitant phe-
nomenon of ‘magnetic catalysis’, according to which a
perpendicular magnetic field can open up a gap ∼√

B − B0,
where B0 is proportional to the electron density of doping
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relative to the Dirac point, at arbitrarily small values of
g [8, 9]. Unlike the mechanism proposed in [5], the gap-
opening effect of the magnetic field appears to be of a purely
orbital nature. Also, contrary to the unproven experimental
status of the proposal of [5], the field-induced gap predicted
in [8, 9] may have already been observed in both HOPG [11]
and graphene [12] (the over an order of magnitude disparity
between the measured critical fields B0 might stem from
a comparable difference in the doping densities of the two
systems).

However, the feasibility of the pairing mechanism of [8, 9]
was later questioned in [5, 13], whose authors argued that
it would likely be completely hindered by a downward
renormalization of the effective Coulomb coupling (1) due to
an increase of the renormalized Fermi velocity with decreasing
momentum [14].

In what follows, we refine the analysis of [8] and extend
it to the cases of Coulomb- and phonon-mediated Peierls and
Cooper pairings, respectively, while accounting for the effects
of the running Fermi velocity.

2. Pairing instabilities and mass terms

With an eye on a unified description of both Peierls and
Cooper types of pairings, we describe the Dirac fermion states
as 16-component vectors

�(p) = (ψC,n,α(p), τ nm
2 sαβ2 ψ

†
C,m,β (−p))

ψ =
(

1 + τ3

2
+ i

1 − τ3

2
⊗ σ2

)
(A1, B1, A2, B2)

T
(2)

where the first, second, and third indices in each of the
electron- and hole-like eight-component parts of this vector
pertain to the sublattice (C = A, B), valley (n = L, R), and
spin (α = ↑,↓) degrees of freedom, respectively.

The set of operators acting in the corresponding Hilbert
space is spanned by the basis of 44 matrices

ρn ⊗ σa ⊗ τi ⊗ sα. (3)

The four consecutive factors in the above tensor product act
in the Nambu (particle–hole), sublattice, valley, and spin
subspaces, each of the four indices taking one of the four
possible values (n, a, i, α = 0, 1, 2, 3).

With the magnetic field and chemical potential included,
the Dirac fermion Green function reads

Ĝ(ε,p) = [ε − ρ̂3 ⊗ (vσ‖p − μ+ sB)+ �̂(ε,p)]−1 (4)

where v ≈ 106 m s−1 is the velocity of the Dirac-like nodal
excitations. The part of the self-energy �c = � commuting
with the Dirac Hamiltonian H0 = vσ‖p ([H0,�] = 0)
accounts for the renormalization of the Dirac fermions’
dispersion via the effective Fermi velocity v(p), while the
anticommuting one �a = � ({H0,�} = 0) incorporates
a (possibly, momentum-dependent) fermion mass function
�(p) = T r�̂2/16.

Together, they give rise to the massive Dirac fermion
spectrum

ε = μ+ σ B ± E(p)

E(p) =
√
v2(p)p2 +�2(p).

(5)

The list of putative order parameters includes various Peierls-
and Cooper-like fermion bilinears

CDW = �†ρ3 ⊗ σ3 ⊗ τi ⊗ sα�

SC = �†ρ1,2 ⊗ σ0 ⊗ τi ⊗ sα�.
(6)

Among these bilinears are those which can be associated
with four different types of spin-singlet Dirac-type mass terms
�†i� , classified according to their symmetry properties
under the parity (P−): A(B) ↔ B(A); L(R) ↔ R(L)
and time reversal (T−): A(B) ↔ A(B); L(R) ↔ R(L)
transformations:

ψ†σ3 ⊗ τ1 ⊗ s0ψ = A†
LαBRα + B†

LαARα + h.c.

ψ†σ3 ⊗ τ3 ⊗ s0ψ =
∑

i=L ,R

(A†
iαAiα − B†

iαBiα)

ψ†σ3 ⊗ τ0 ⊗ s0ψ =
∑

i=L ,R

sgn i(A†
iαAiα − B†

iαBiα)

ψ†σ3 ⊗ τ2 ⊗ s0ψ = i A†
LαBRα − i B†

LαARα + h.c.

(7)

where we choose sgn L(R) = ±1 (hereafter, all the
summations over the spin indices are implicit). The above
operators (in the listed order) are P, T -even; P-odd, T -even;
P-even, T -odd; and P, T -odd, respectively. By replacing
s0 with s3 one can also construct spin-triplet counterparts of
equation (7).

Notably, the above order parameters include both
intra-, 〈A(B)†L ,R A(B)L ,R〉, and inter-node, 〈A(B)†L ,R B(A)R,L〉,
excitonic pairings with the total momenta 0 and �KL − �K R =
2 �KL ≡ − �KL , respectively. It was shown in [8] that the former
mass terms manifest themselves as a charge density wave
(CDW) representing the excess/deficit of the electron density
which alternates between the two sublattices. In contrast,
the latter terms correspond to the Kekule dimerization pattern
which results in the tripling of the unit cell and the ensuing
equivalence of the two Dirac points in the reduced Brillouin
zone.

For comparison, the ordinary and staggered chemical
potential/magnetic field terms correspond to the bilinears

∑
i

δαβ [1, sgnα](A†
iαAiβ + B†

iαBiβ),

∑
i

δαβ[1, sgnα](A†
iαAiβ − B†

iαBiβ)
(8)

which only cause energy level shifts, but no gaps.
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Likewise, an attractive interaction can potentially generate
the following Majorana-type mass terms:

ψσ0 ⊗ τ1 ⊗ s0ψ =
∑

i=L ,R

(AiαAiβ + BiαBiβ)s
αβ

2

ψσ0 ⊗ τ2 ⊗ s0ψ =
∑

i=L ,R

sgn i(AiαAiβ + BiαBiβ)s
αβ

2

ψσ0 ⊗ τ0 ⊗ s2ψ = (ALαBRα − BLαARα)

ψσ0 ⊗ τ3 ⊗ s0ψ = (ALαBRα − BLαARα)s
αβ

2

(9)

amongst which there are both inter-node (uniform),
〈AL ,R BR,L〉, and intra-node, 〈A(B)L ,R A(B)L ,R〉, Cooper
pairings, the latter corresponding to a non-uniform (LOFF-
type) state.

Which of the above orderings (or a combination thereof)
would have a higher chance to occur depends on the parameter
values of the overall effective electron interaction which is
comprised of the direct Coulomb repulsion and the effective
phonon-mediated attraction.

3. Electron interactions and excitonic pairing

At small transferred momenta the effective interaction in
undoped (μ = 0) graphene immersed in a medium with
ε ∼ 1 is dominated by the Coulomb repulsion which brings
about a putative Peierls-like (excitonic) pairing instability. In
contrast to the model problem of N � 1 Dirac fermion species
studied in [5] by means of the 1/N-expansion, that of graphene
features no small parameter.

By analogy with the earlier analyses [15] of a fully
relativistically invariant counterpart, dubbed chiral symmetry
breaking, of the excitonic instability, the latter can be studied
in the framework of the Schwinger–Dyson equation

�̂(ε,p) =
∑

q

∫
dω

2π
V (ε− ω,p − q)

ω + vσ‖q + �̂(ω,q)
ω2 − E2(q)+ i0

(10)
written in terms of the dressed fermion Green, interaction, and
vertex () functions.

In the case of an ultra-violet divergent momentum integral
the very derivation of equation (10) becomes problematic
because of the lack of a proper account of non-universal local
terms in the Hamiltonian. While other works [10] resorted
to a phenomenological approach where such terms would be
treated as free parameters, we focus on the situation where
the gap equation receives a dominant contribution from the
momenta �/v � q � �, thereby justifying the derivation
of equation (10). Incidentally, such a behavior does occur
in those situations where the fermion DOS vanishes and/or
the interaction function remains sufficiently singular at small
momenta.

With the fermion polarization

�(ω, q) = Nq2

16
√
v2(q)q2 − ω2

(11)

included, the effective interaction in equation (10) reads

VC(ω, q) = 2πgv

q + 2πgv�(ω, q)
. (12)

While the vertex function in equation (10) remains largely
unaffected by the interactions,  ≈ 1 [14], the dressed fermion
Green function has to incorporate, in addition to the mass term,
the aforementioned renormalization of the Fermi velocity. The
latter (and, concomitantly, the effective momentum-dependent
coupling g(p)) were approximated in [5, 13] by a power-law

v(p)

v
= g

g(p)
=

(
�

p

)η
(13)

within the range of momenta �/v � p < �, where � is a
momentum cut-off of order the inverse lattice spacing.

Computed in the 1/N-expansion, the exponent assumes
the value [5, 13]

η = 8

π2 N
(14)

which remains relatively small down to the physically relevant
number N = 4 of two-component (pseudo)spinors with
different values of the physical spin and valley indices. At
still lower energies and/or g0 � 1 the renormalized Fermi
velocity shows an even slower (only logarithmic) momentum
dependence [5].

Upon neglecting the unimportant vertex corrections,
switching to imaginary frequencies, performing the frequency
integration, and putting ε = vp in equation (10), one arrives
at the equation for the momentum-dependent mass function
defined as the anticommuting part of the self-energy �(p) =
�a(ivp,p) evaluated on the mass-shell

�(p) =
∑

q

VC(iv(p − q),p − q)
�(q)

2E(q)
tanh

E(q)

2T
. (15)

Notably, a strong momentum dependence of the integral kernel
in equation (15) rules out the customary BCS-type solution
�(p) = const. Concomitantly, because of the vanishing DOS
of the Dirac liquid the Coulomb coupling would have to be
strong enough to provide for a possible onset of pairing.

At T = 0 and with the velocity renormalization (13)
taken into account, one can cast equation (15) in the following
approximate form:

�(p) =
∮

dφ

4π

∫ �

0

qηdq

|p − q|
g

(�η + (πgN/8
√

2)|p − q|η)
× �(q) (16)

where φ is the angle between the vectors p and q, and
the additional factor of

√
2 is characteristic of the typical

energy and momentum transfers (ω ≈ vq) contributing to the
integral.

It is worth noting that, contrary to the naive expectation
of its uniformly weakening effect on the effective momentum-
dependent coupling constant, the velocity renormalization (13)
affects the gap equation in a more subtle way. Namely, the
above expectation is only valid for weak couplings, whereas
in the strong coupling regime g � 1 one finds a nearly

3
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complete cancelation between the velocity-dependent factors
in the numerator and denominator of equation (16).

In what follows, we analyze the gap equation along the
lines of the earlier studies of chiral symmetry breaking [15].
In doing so, we primarily focus on its starkly novel features
that are robust enough to sustain the approximations involved.
Namely, by following the same procedure as in [8, 9, 15] we,
first, linearize equation (16) with respect to the unknown mass
function and then transform it into the differential form

d2�(p)

dp2
+ 2 + ηN

p

d�(p)

dp
+ g̃(1 + ηN )

2p2−δη
�(p)

�δη
= 0 (17)

where δη = η − ηN and the effective coupling

g̃ = g

1 + πNg/8
√

2
(18)

interpolates between the weak (g̃ ≈ g) and strong (g̃ ≈
8
√

2/πN) coupling limits, which are attainable by putting
ηN = 0, g → 0 and ηN = η, g → ∞, respectively.

In order for equation (17) to be consistent with the
original integral equation (15), it has be complemented with
the boundary conditions

d�(p)

dp

∣∣∣∣
p=�/v

= 0

[
(1 + ηN )�(p)+ p

d�(p)

dp

]∣∣∣∣
p=�

= 0.

(19)

The linearized equation (17) can also be interpreted as the
radial Schroedinger equation for the zero-energy state in the
two-dimensional spherically symmetrical potential U(r) ∝
1/r 2−δη. This analogy suggests that for 0 � δη < 1 the zero-
energy solution might exist for all couplings g̃ in excess of a
finite threshold value g̃c.

In order to illustrate the behavior of the physically relevant
solution of equation (17) we employ the WKB method and
consider a linear combination of two linearly independent
functions

�±(p) = C±
p1−δη/2 P(p)1/2

exp

(
±i

∫ p

κ

P(p′) dp′
)

(20)

where, for p � κ = [(1 + ηN )/2g̃]1/δη�,

P2(p) = 1

p2

[
g̃

1 + ηN

2

( p

�

)δη − (1 + ηN )
2

4

]
. (21)

On the general grounds, one expects the physically
acceptable solution to monotonically increase with decreasing
momentum, eventually leveling off at a finite value � =
�(p)|p=0. Since the linearized equation (17) ceases to be
applicable at momenta below p � �/v, a reliable use of
equations (20) and (21) would be limited to the range of
parameters p � �/v > κ .

Strictly speaking, the applicability of the WKB technique
requires the (quantized in multiples of π ) values of the
momentum integral in the exponential of equation (20) to
be large, in which case the mass function �(p) develops

unphysical oscillations as a function of momentum. Therefore,
in order to find a monotonic solution which satisfies the
boundary conditions (19), we choose C+/C− = i and equate
the aforementioned integral to its lowest possible ‘quantized’
value

∫ �

�

dp

p�η/2

√
g̃

1 + ηN

2
(pδη − κδη)+ δ� + δ� = π (22)

where

δ� = tan−1

√
2g̃(1 + ηN )(�δη − κδη)

1 + ηN − δη/2(1 − (g̃c/g̃))

δ� = tan−1

√
2g̃(1 + ηN )(�δη − κδη)

1 + ηN + δη/2(1 − (κ/�)δη)
.

(23)

At η = 0 equation (17) becomes scale invariant and
equation (20) amounts to the solution obtained in [8, 9]

�(p) = �3/2

(vp)1/2
sin

(
1

2

√
2g̃ − 1 ln

�

p
+ 2δ

)
(24)

where δ = δ� = δ� = tan−1
√

2g̃ − 1. It is worth noting
that, regardless of the formal restrictions on the applicability
of the WKB approximation, equation (24) remains accurate in
the entire range � � p < � [8, 9].

The maximum value of the mass function � = �(p =
�/v) is given by equation (22)

� = v� exp

(
− 2π − 4δ√

2g̃ − 1

)
. (25)

Obviously, such a solution requires the coupling to be in excess
of the critical value

g̃c = 1
2 . (26)

For N = 4, equations (18) and (26) yield the critical
coupling gc = 1.13 which appears to be tantalizingly close
to (albeit still higher than) its actual value in graphene on the
SiO2 substrate, but below that in free-standing (suspended)
graphene. Conversely, in the asymptotic g → ∞ regime the
critical number of fermion species below which the mass is
generated is Nc = 16

√
2/π ≈ 7.18.

For η � 1 the analysis of equation (22) reveals an increase
in the critical value

g̃c = 1
2 (1 + ηN + (3πδη)2/3 + · · ·), (27)

showing that a non-zero mass can emerge even in the case of a
momentum-dependent coupling.

The gap equation (15) can also be used to estimate the
mean-field critical temperature. For this approximate calcula-
tion we neglect the weak (at large N) renormalization (13) by
putting η = 0. The critical temperature can then be evaluated
by solving the equation

∫ �

p0

dp

p

√
2

(
g̃ tanh

vp

2Tc
− g̃c

)
≈ 2π (28)

4
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where p0 is defined as tanh(vp0/2Tc) = 1/g̃. As a result,
equation (28) yields the relation between the gap and the
(mean-field) critical temperature

Tc ≈ �

| ln(1 − g̃c/g̃)| , (29)

which is markedly different from the universal ratio Tc/� =
eC/π characteristic of the standard BCS case.

Despite the highly unconventional relation (29), both �
and Tc vanish rapidly upon approaching the threshold coupling.
Applying the above rough estimates to undoped free-standing
graphene one obtains the gap and the critical temperature of
order � ∼ Tc ≈ 10 eV e−8 ∼ 4 meV which is comparable to
the gap ∼10 meV reported in [2] (an order of magnitude larger
gap found in epitaxial graphene [1] is likely to be induced by
the SiC substrate, though).

A finite chemical potential μ represents, depending on its
sign, a finite density of either particles or holes. It gives rise to a
mismatch between the occupation numbers of the particles and
holes which sets a lower limit of the momentum integration
in equation (15). A straightforward analysis then shows that
at p � μ/v the mass function �(p) tends to level off at a
value below that at μ = 0, whereas for p > μ/v the solution
obtained for μ = 0 remains essentially intact.

It also implies that the excitonic pairing should be
sensitive to such particle–hole symmetry-breaking factors as
electron–hole separation (‘puddles’). As follows from the
above estimates, the presence of puddles with density n ∼
1011 cm−2 could already hinder the excitonic gap � ∼
10 meV.

4. Electron–phonon interactions and Cooper pairing

Next, we discuss putative Cooper pairing instabilities in
graphene. For interactions dominated by small momentum
transfers, the onset of the Cooper instability would be
contingent with the existence of a range of parameters where
the effective electron interaction becomes attractive due to a
more efficient screening of the Coulomb interaction. This
situation can potentially occur, e.g., for a large-ε substrate
(e.g., HfO2) or in the presence of water molecules trapped
between the graphene sheet and the substrate.

The Cooper pairing scenario would provide for an
alternative explanation of the data of [16] indicating the
presence of a ∼100 meV gap at the Fermi energy in epitaxially
grown graphene on a SiC substrate. The previously proposed
explanations of this finding include such mechanisms as
electronic states in the underlying buffer layer, charging/band
bending effects, coupling to the surface excitations, as well
as a trivial finite size effect. As yet another idea, a phonon-
mediated inelastic tunneling was argued to be behind the
apparent TDOS suppression which was then misinterpreted as
a gap opening [17].

However, considering that the system appears to be
naturally doped, μ ≈ 0.4 eV [1], it is conceivable that at
such a sizable doping the Coulomb repulsion would be rather
strongly screened out and the electron–phonon coupling could

then get a chance to become dominant, resulting in the Cooper
instability.

The phonon spectrum of graphene consists of a total of
six modes, which list includes (in- and out-of-phase) in-plane
longitudinal/transverse and out-of-plane ones. Dispersion
relations of the pertinent low energy acoustic modes with
momenta near the  point can be obtained from the (somewhat
simplified for the sake of our qualitative discussion) elastic
energy of the graphene sheet

F = ρ

2
[(∂t �u)2 + (∂t h)

2 − κ2(∂2
i h)2

− c2(∂i u j + ∂ j ui + ∂i h∂ j h)
2] (30)

which governs the in-plane phonons with a linear dispersion
(�1(q) = cq where c ∼ 104 m s−1) and linear coupling to
the Dirac fermions as well as the out-of-plane (‘fluxor’) modes
with a quadratic dispersion (�2(q) = κq2) and quadratic
coupling [18]. The optical modes near the -point, as well
as all the modes at the KL ,R-ones, are gapped and their
dispersions remain nearly constant (�0(q) = �0) at small
deviations from the corresponding points in the momentum
space.

The corresponding matrix elements controlling the
electron–phonon coupling vary with momentum as

Ma
q ∝

(
q√

mC�a(q)

)a

(31)

where a = 0, 1, 2 and mC = 2 × 10−23 g is the mass of the
carbon atom.

The overall effective electron interaction mediated by the
phonon modes is given by the expression

Vph(ω,q) =
∑

a=0,1

Da(ω,q)|Ma
q |2

+
∑

q′

∫
dω′

2π
|M2

q ′ |2 D2(ω
′
+,q′

+)D2(ω
′
−,q′

−) (32)

where ω′± = ω′ ± ω/2, q′± = q′ ± q/2, and

Da(ω,q) = �a(q)

ω2 −�2
a(q)+ i0

(33)

is the propagator of the a-type mode.
A relative importance of various phonon-induced electron

interactions can be readily assessed in the quasi-static (ω = 0)
approximation. When treated this way, all the gapped and
linear in-plane modes would have given risen to an effective
interaction with the Fourier transform

V (0,1)
ph (q) = −

∑
a=0,1

|Ma
q |2

�a(q)
∼ const (34)

which is short ranged in the real space (V (0,1)
ph (r) ∝ −δ(r)).

By contrast, the quadratic fluxor mode would produce a long-
ranged potential with the Fourier transform

V (2)
ph (q) = −

∑
k

|M2
k |2

�2(k + q)+�2(k)
∼ − ln

�

q
(35)

which decays with the distance as V (2)
ph (r) ∝ −1/r 2.

5
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Thus, depending on the relative strength of this coupling,
the fluxor mode could provide for the strongest tendency
towards the Cooper pairing, as compared to the gapped and
linear acoustic modes.

Focusing solely on the electron–phonon coupling, one can
derive the Cooper analog of the gap equation (15) for the
‘on-shell’ self-energy �SC(p) = �a(vp ≈ μ,p). Upon
integrating over the frequencies one obtains

�SC(p) =
∑
a,q

|Ma
p−q|2

�a(p − q)+ E(q)

�SC(q)

2E(q)
tanh

E(q)

2T
. (36)

In contrast to the case of the excitonic instability at μ = 0,
the solution of equation (36) exists for an arbitrarily weak
electron–phonon interaction (which, however, is assumed to
be stronger than the screened Coulomb one). This solution
appears to be essentially independent of the momentum for
p � μ/v, and the gap conforms, by and large, to the standard
BCS formula

�SC ≈
∑

a=0,1,2

Eae−1/λa (37)

where the characteristic energy scales and dimensionless
coupling constants corresponding to the different modes are
given by the expressions

E0 ∼ min[�0, μ], E1 ∼ cμ

v
, E2 ∼ μ

(
�κ

v

)1/2

(38)
and

λ0 ∼ μ
D2a2

m�2
0v

2
, λ1 ∼ μ

mc
,

λ2 ∼ μa2

m2κ3
ln
v3�

κμ2
,

(39)

respectively. Here D ≈ 7 eV A−1 is the deformation potential,
a = 1.42 A is the lattice spacing, and �0 ∼ 0.2 eV is the
energy of the Raman-active gapped phonon modes.

In contrast to excitonic pairing, the Cooper one is
facilitated by an increasing chemical potential (of either sign),
while it is suppressed by a Zeeman-coupled magnetic field.
Also, the logarithmic factor in the coupling to the fluxor mode
λ2 is another manifestation of the long-ranged nature of the
effective electron interaction (35) mediated by this mode.

As far as the actual values of the couplings (39)
are concerned, those predicted by the density functional
theory [19] seem to be much too weak to explain the
experimentally observed downward renormalization of the
Fermi velocity [1, 2, 16]. Specifically, apart from being
of the sign opposite to that of the predicted Coulomb-only
renormalization (13), the experimentally measured velocity
change appears to be quite large in magnitude (≈20%) and
suggestive of the effective electron–phonon coupling of order
λ0 ∼ 0.2–0.4.

The analysis of [20] limited to the gapped in-plane
modes indicates that, depending on the mode’s symmetry,
the corresponding coupling constant might become strongly
enhanced at low momenta by the Coulomb interactions.

Namely, in [20] the coupling constant for the optical ‘A1’-
mode at the K-point was found to increase by over an order of
magnitude from its microscopic value as a result of the scaling
λ0(p) = λ0(v(p)/v)2.

For the largest estimated values of the above parameters
the gap can be as high as � ≈ 0.4 eV e−2.5 ∼ 30 meV
which compares favorably with the experimentally observed
∼100 meV gap [16].

The lack of a significant momentum dependence in
equation (36) would give rise to the BCS relation between
�SC and the mean-field critical temperature T SC

c . Although
the above estimates suggest that for the experimentally relevant
electron densities n ∼ 1013 cm−2 the latter could be as high as
T SC

c ∼ 150 K, the prospects of observing the Cooper instability
in graphene are likely to be hampered by a number of factors.

Firstly, the above Peierls- and Cooper-pairings would
primarily manifest themselves through a ‘pseudogap’ in the
electron spectrum which emerges below the corresponding
mean-field critical temperatures. However, a true transition
in such a two-dimensional system as graphene would only
take place at a temperature determined by the (un)binding
of the vortex–antivortex excitations of the order parameter in
question.

The critical temperature of the underlying Kosterlitz–
Thouless (KT) transition is related to the rigidity with respect
to the fluctuations of that order parameter. The latter can be
computed by expanding the pertinent susceptibility

ρs = �i j(0, q)

qi q j

∣∣∣∣
q→0

= �2
∑

p

∫
dω

2π
Tr ̂i Ĝ(ω, p + q)̂ j Ĝ(ω, p) ≈ 1

4π
�

(40)

to second order in the center-of-mass momentum q , which
procedure yields the KT temperature

TKT = π

2
ρs ≈ 1

8
�. (41)

The observation that the KT transition temperature is smaller
than the mean-field one by an order of magnitude is in
agreement with the previous work of [7].

Despite being robust against potential disorder, the onset
of the Cooper pairing can be hindered by a rippling of the
graphene sheet. The latter was argued to produce effective
magnetic fields as high as B ∼ 1–5 T [21], whose pair-
breaking effect could potentially eliminate the propensity
towards the Cooper instability altogether, since for �SC ∼
0.1 eV the upper critical field Bc2 = �0�

2
SC/2πv

2 would be
of order ∼4 T.

5. Conclusions

In summary, we carried out the analysis of excitonic (Peierls)
and Cooper pairing instabilities in graphene which presents a
physically relevant example of the nodal fermion systems with
a power-law DOS and long-range pairwise interactions.

We find that undoped graphene can be prone to the onset of
a variety of excitonic instabilities, provided that the Coulomb

6



J. Phys.: Condens. Matter 21 (2009) 075303 D V Khveshchenko

coupling is sufficiently (albeit not unphysically) strong. Unlike
in the low-energy (hence, weak-coupling) BCS-like pairing
scenario of [5, 7], the non-BCS solution of the gap equation
equation (15) is strongly momentum dependent and requires
the coupling to be in excess of a finite threshold value gc.
Moreover, the perturbative downward renormalization of the
running coupling constant g(p) does not appear to have a
dramatic impact on the onset of this excitonic instability (or
a lack thereof).

With increasing doping, the excitonic instability becomes
suppressed, while a propensity towards the zero threshold
Cooper pairing driven by the phonon-mediated attraction gets
stronger (in practice, however, it remains countered by the
residual screened Coulomb repulsion). Should either of these
instabilities fully develop, it would give rise to a momentum-
dependent gap function and/or other experimentally testable
non-BCS features.

A better understanding of the phenomena resulting in
a finite gap in the nodal fermion spectrum is going to be
instrumental for the proposed applications of graphene in post-
silicon electronics. Therefore, one should expect that future
experiments will help to ascertain the actual status of the above
scenarios before long.
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Note added in proof. After this work was first made public (arXiv:0807.0676),
the results of two new Monte Carlo simulations were released, according to
which the aforementioned excitonic transition in free-standing graphene might
occur at a critical coupling as low as gc = 1.1 for N = 4 [22] and a number
of fermions as high as Nc = 9.4 for g → ∞ [23] (note that in both preprints
the quoted number of fermions N = 2 pertains to the four-component bi-
spinors, which corresponds to N = 4 in this paper). Also, in the recent
work [24] the integral gap equation (10) was solved numerically without any
further approximations and the critical number of fermions was found to be
Nc ≈ 7. All the above values appear to be remarkably close to those obtained
in this paper.
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